Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\) (vì \(n\ge2\))
Vậy \(A< 1\).
a) \(\Delta ABE\)vuông tại A \(\Rightarrow\widehat{AEB}< 90^o\)\(\Rightarrow\widehat{BEC}>90^o\)( tổng 2 góc kề bù )
mà \(\widehat{A}=90^o\)\(\Rightarrow\widehat{BEC}>\widehat{A}\)
b) Vì \(\widehat{BEC}>90^o\)\(\Rightarrow BE< BC\)( cạnh đối diện của góc tù trong1 tam giác )
\(\Rightarrowđpcm\)
Xét ΔBAM và ΔCAN , có :
AB = AC ( gt )
A1 = A2 ( gt )
Đường thẳng d chung ( M , N thuộc d )
=> ΔBAM = ΔCAN (đpcm)
\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)
\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)
Vì n6 + 1 < n6 +n
=> 1 -A > 1-B
=> A < B
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)