K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

4A=4+4^2+4^3+4^4+....+4^100

4A-A=4^100-1

=>3A=4^100-1 mà 4^100-1<4^100

=>3A<B  =>A<B/3(đpcm) 

12 tháng 7 2017

Ta có: A = 1+4+4^2+4^3+...+4^99  
=> 4A = 4.(1+4+4^2+4^3+...+4^99)
=> 4A = 4+4^2+4^3+...+4^99+4^100 
=> 4A - A = (4+4^2+4^3+...+4^99+4^100) - (1+4+4^2+4^3+...+4^99) 
=> 3A = 4^100 - 1 
=> A = 4^100-1/3 < 4^100/3 mà B = 4^100 
=> A < 4^100/3 
Bài toán đã được chứng minh.

 

28 tháng 6 2015

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

8 tháng 10 2018

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)

28 tháng 6 2015

A=1+4+4^2+...+4^99

=>4A=4+4^2+...+4^100

=>4A-A=4+4^2+...+4^100-1-4-4^2-...-4^99

=>3A=4^100-1

=>A=4^100-1/3 < 4^100

vậy A<B

8 tháng 3 2017

1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100

1-1/100<1