K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]

A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]

A=[1+3+3^2+3^3] NHÂN[1+...+3^2018

A=40 nhân [1+...+3^2018]

=> A chia hết cho 40

21 tháng 12 2018

Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

1 tháng 1 2018

\(M=1+3+3^2+............+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)

\(13\left(3^2+3^5+......+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

b, tương tự

1 tháng 1 2018

Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak

12 tháng 9 2021

\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)

18 tháng 10 2021

A=3 + 3+ 3+ ... + 32020 =3 (1 + 3) + 3(1 + 3) + ... + 32019 . (1 + 3)

=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4