Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nhân cả m với n với 101 và so sánh 101m với 101n rồi kết kuận so sánh m với n
1-5+9-13+...-89+93
<=> 1-5+9-13+...+81-85-89+93
= (1-5)+(9-13)+...+(81-85)-89+93
= (-4)+(-4)+...+(-4)-89+93
=> (-4).11-182
= (-44)-182
= -226
1-5+9-13+...-89+93
<=> 1-5+9-13+...+81-85-89+93
= (1-5)+(9-13)+...+(81-85)-89+93
= (-4)+(-4)+...+(-4)-89+93
=> (-4).11-182
= (-44)-182
= -226
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
Ta thấy:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\)
(Có 100 số hạng \(\frac{1}{200}\))
\(=\frac{1\cdot100}{200}=\frac{100}{200}=\frac{1}{2}\)
Lại có:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+......+\frac{1}{100}\)
(Có 100 số hạng \(\frac{1}{100}\))
\(=\frac{1\cdot100}{100}=\frac{100}{100}=1\)
Vậy tổng A lớn hơn \(\frac{1}{2}\)nhưng bé hơn \(1\).
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
A>7/12