K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Giả sử A là số nguyên tố.

Đầu tiên ta có nhận xét: \(\left(a+1\right)\left(a-1\right)=a^2-a+a-1=a^2-1.\)

Theo giả thiết A sẽ có 2n+1 chữ số, các chữ số là 0,1 xen kẽ. Suy ra

\(A=10^{2n}+10^{2n-2}+\cdots+1\to10^2A=10^{2n+2}+10^{2n}+\cdots+10^2.\)

Vì vậy \(99A=10^2A-A=10^{2\left(n+1\right)}-1\to A=\frac{10^{2\left(n+1\right)-1}}{99}=\frac{\left(10^{n+1}-1\right)\left(10^{n+1}+1\right)}{99}.\)

Nếu \(n+1=2k\) là số chẵn thì \(10^{n+1}-1=10^{2k}-1=9999\ldots99\)\(2k\) số \(9\) nên chia hết cho \(99\). Vì A là số nguyên tố và \(10^{n+1}+1>1\)  nên \(\frac{10^{n+1}-1}{99}=1\to n+1=2\to n=1\to A=101.\)

Nếu \(n+1=2k+1\)  là số lẻ thì \(10^{n+1}+1=100\ldots01\) có 2k+2 chữ số, nên chia hết cho 11 theo dấu hiệu nhận biết. Mà \(\frac{10^{n+1}-1}{9}\) là số nguyên dương.  Thành thử \(\frac{10^{n+1}-1}{9}=1\)  hoặc \(\frac{10^{n+1}+1}{11}=1\). Suy ra \(n=0\to A=1\) (loại).

Đáp số \(A=101.\)

7 tháng 11 2017

n ở đâu bn

7 tháng 11 2017

MÌNH BỔ SUNG THÊM LÀ: 

Cho số A= 10101...0101 gồm n chữ số 1

14 tháng 7 2015

Hợp số trong trường hợp 2n+1:3

Các trường hợp khác Số nguyên tố...

23 tháng 3 2016

la hop so