K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Ta có:

M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)

M=\(\frac{1.3....99}{2.4....100}\)

Lại có:

N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)

N=\(\frac{2.4....100}{3.5....101}\)

\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)

\(\Rightarrow\)M.N=\(\frac{1}{101}\)

CT
24 tháng 2 2023

em nên gõ công thức trực quan để đề bài rõ ràng nhé

2: 

a: =>x-1/5=2/15

=>x=2/15+3/15=5/15=1/3

b: =>x+7/12=-5/6-2/6=-7/6

=>x=-14/12-7/12=-21/12=-7/4

c: =>x+2/3=-10/3

=>x=-4

d: =>1/4:x=-11/4

=>x=-1/4:11/4=-1/11

e: =>8:x=1,6

=>x=5

10 tháng 5 2020

:D

10 tháng 5 2020

a, \(\frac{3}{5}+\frac{-4}{15}=\frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}\)

b, \(\frac{-1}{3}+\frac{2}{5}+\frac{2}{15}=\frac{-5}{15}+\frac{6}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}\)

c, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}=\frac{-3}{5}+\frac{1}{3}+\frac{-4}{5}+\frac{7}{5}=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{1}{3}=\frac{1}{3}\)

d, \(\frac{2}{7}+\frac{1}{9}+\frac{3}{7}+\frac{5}{9}+\frac{-5}{6}=\left(\frac{2}{7}+\frac{3}{7}\right)+\left(\frac{1}{9}+\frac{5}{9}\right)+\frac{-5}{6}=\frac{5}{7}+\frac{6}{9}+\frac{-5}{6}=\frac{90}{126}+\frac{84}{126}+\frac{-105}{126}=\frac{69}{126}=\frac{23}{42}\)

e, \(\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}=\left(-1\right)+1+\frac{-1}{5}=\frac{-1}{5}\)

f, \(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\frac{-28}{31}+\frac{-1}{17}+\frac{-1}{5}=\left(\frac{-3}{31}+\frac{-28}{31}\right)+\left(\frac{-6}{17}+\frac{-1}{17}\right)+\left(\frac{1}{25}+\frac{-1}{5}\right)=\left(-1\right)+\frac{-7}{17}+\frac{-4}{25}=\frac{-425}{425}+\frac{-175}{425}+\frac{-68}{425}=\frac{-668}{425}\)

Chúc bn học tốt

28 tháng 4 2018

a/  Tinh giá trị:

\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\) 

b/  Chứng minh:

\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\) 

-  Với mọi số tự nhiên n khác không thì luôn có:   \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:

 \(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\) 

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\) 

c/  Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\) 

    \(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

   Vậy:            \(F>\frac{7}{12}\) .

23 tháng 10 2021

12 phần 25 trừ cho 14 phần 5 bằng bao nhiêu

29 tháng 10 2021
2 phân 7 -1×1phan5