Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126
→S⋮126
S⋮5.2=10
Vậy tận cùng là 0
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=0,10025
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=\(\frac{3^{2005}-3}{2}\)
\(A=1-3+3^2-3^3+3^4...-3^{2003}+3^{2004}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2004}+3^{2005}\)
\(\Rightarrow3A+A=3^{2005}+1\)
\(\Rightarrow4A=3^{2005}+1\)
\(\Rightarrow4A-1=3^{2005}+1-1\)
\(\Rightarrow4A-1=3^{2005}\)
\(\Rightarrow4A-1\) là một lũy thừa của \(3\)
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
A= 4+2^2+2^3+....+2^2015
\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016
\(\Rightarrow\) 2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015
\(\Rightarrow\)A=8+2^2016 - 4 - 2^2
\(\Rightarrow\)A=2^2016
Vậy A là lũy thừa của 2
Chép đề lên nhé làm cho bạn đã là miễn phí rồi bạn còn bắt người ta dở sách à :)
f(x) = x2 - x + 5 - ( 4x2 + x3 - 4x + 3 )
= x2 - x + 5 - 4x2 - x3 + 4x - 3
= -x3 - 3x2 + 3x - 2
g(x) = -( 2x2 - 4x + 1 ) - ( -3x3 + 5x2 - 2 )
= -2x2 + 4x - 1 + 3x3 - 5x2 + 2
= 3x3 - 7x2 + 4x + 1
h(x) - g(x) = f(x)
h(x) = f(x) + g(x)
= -x3 - 3x2 + 3x - 2 + 3x3 - 7x2 + 4x + 1
= 2x3 - 10x2 + 7x - 1
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a) \(3^2.\frac{1}{248}.81^2.\frac{1}{3^2}\)
\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^2}\)
\(=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^2}\)
\(\frac{1}{3^3}.3^6=3^6:3^3=3^3\)
b) \(4^6.256^2.2^4\)
\(=\left(2^2\right)^6.\left(2^8\right)^2.2^4\)
\(=2^{12}.2^{16}.2^4\)
\(=2^{32}\)
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2