Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz-cy=cx-az=ay-bx=0\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
2/ Giả sử \(a>b\Rightarrow\frac{a}{b}>1\)
Ta sẽ chứng minh \(\frac{a}{b}>\frac{a+2017}{b+2017}\) . Thật vậy : \(\frac{a}{b}>\frac{a+2017}{b+2017}\Leftrightarrow ab+2017a>ab+2017b\Leftrightarrow a>b\) luôn đúng
Giả sử \(a< b\) thì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\) . Thật vậy :
\(\frac{a}{b}< \frac{a+2017}{b+2017}\Rightarrow ab+2017a< ab+2017b\Leftrightarrow a< b\) luôn đúng
Giả sử \(a=b\Leftrightarrow\frac{a}{b}=1=\frac{2017}{2017}=\frac{a+2017}{b+2017}\)
\(\text{ ta có: }\frac{a}{b}=\frac{a.\left(b+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.a}{b^2+2015.b}\)
\(\frac{a+2015}{b+2015}=\frac{b.\left(a+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.b}{b^2+2015.b}\)
Nếu a>b thì :
\(a.b+2015.a>a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}>\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
Nếu a=b thì:
\(a.b+2015.a=a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}=\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}=\frac{a+2015}{b+2015}\)
Nếu a<b thì:
a.b+2015.a<a.b+2015.b \(\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}
Ta có :
Khi a, b cùng dấu :
Nếu a > 0 và b > 0 suy ra :
Nên : vậy
Nếu a < 0 và b < 0 suy ra :
Nên : vậy
Khi a, b khác dấu :
Nếu a > 0 và b < 0 suy ra :
Nên : vậy
Nếu a < 0 và b > 0 suy ra :
Nên : vậy
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
sẽ chọn câu này chứ?