Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c tỉ dãy số bằng nhau ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Leftrightarrow a=b=c\) (*)
Theo giả thiết ta có:\(a=2012\).Từ (*) suy ra \(a=b=c=2012\)
Vậy . . .
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng t/c của dãy TSBN ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Suy ra: a=b
b=c
c=a
Do đó: a=b=c
mà a=2012
Nên b=c=2012
Vậy a=b=c=2012
\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)
Ta có: \(\frac{b}{3}=\frac{a}{2};\frac{a}{4}=\frac{c}{9}\Rightarrow\frac{b}{6}=\frac{a}{4}=\frac{c}{9}=\frac{b^3}{216}=\frac{a^3}{64}=\frac{c^3}{729}=\frac{-1009}{1009}=-1\)
\(\Rightarrow\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow b=-6\)
\(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)
\(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow c=-9\)
Ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{0,5}=30\)
\(\Rightarrow a=30.\frac{2}{1}=60\)
\(b=30.\frac{3}{2}=45\)
\(c=30.\frac{4}{3}=40\)
Vậy bộ số \(\left(a;b;c\right)\)là:\(\left(60;45;40\right)\)
có ai biết không nào?