K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Giải thích các bước giải:

 a2=a.aa2=a.a

Th1 a<0

=>−a2=−(−a)(−a)−a2=−(−a)(−a)

a2>=0với mọi a a2>=0với mọi a

=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0

a2a2=a.a

a<0

a2=(−a)(−a)=a2a2=(−a)(−a)=a2   >= 0 với mọi a

a>=0

a2>=0

Vt lại cho dễ hiểu

Ta có  \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)

Th1: \(a\in Z;a\ge0\)

Khi đó a . a ≥  0

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)

TH2: \(a\in Z;a< 0\)

Khi đó a . a > 0

\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)

Từ (1) và (2) => đpcm 

T chỉ vt lại theo bài của bạn Linh thôi đóa

Vì a \(\inℤ\)nên có 2 trường hợp

TH1 : a là số nguyên âm

 \(\Rightarrow\)a có dạng là (-b)

Mà (-b)2 = (-b).(-b) = b.b - là số nguyên dương

Nên a2 \(\ge\)0

TH2 : a là số nguyên dương

\(\Rightarrow\)a2 là số nguyên dương

Nên a2 \(\ge\)0

_HT_

( Cho hỏi -a2 hay là (-a)2 ạ ? )

23 tháng 2 2020

CMR : a2 lớn hơn hoặc bằng 0

Nếu a là 0 thì a2 = 0

Nếu a ∈ N* thì a2 > 0

☛ Vậy a ∈ N thì a2 ≥ 0

CMR : -a2 bé hơn hoặc bằng 0

Nếu a là 0 thì -a2 = 0

Nếu a ∈ N* thì -a2 < 0

☛ Vậy a ∈ N thì -a2 ≤ 0

*Trường hợp 1: a≠0

Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)

Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)

*Trường hợp 2: a=0

Ta có: \(a^2=0^2=0\)

Do đó, \(a^2=0\forall a=0\)(2)

Từ (1) và (2) suy ra \(a^2\ge0\forall a\)

\(-a^2\le0\forall a\)

4 tháng 9 2017

a) /x-2/ nhỏ hơn hoặc bằng 2

vì /a/ \(\ge\)0

mà /x-2/\(\le\)2

\(\Rightarrow\)/x-2/={0;1;2}

Nếu /x-2/=0

   x-2 =0

\(\Rightarrow\)x=2

Nếu /x-2/=1

   x-2  =1

\(\Rightarrow\)x=3

Nếu /x-2/=2

   x-2 =2

\(\Rightarrow\)x=4

Vì x\(\in\)Z nên x={2;3;4}

b) /x-3/ nhỏ hơn hoặc bằng 0

Vì /a/\(\ge\)0

mà /x-3/\(\le\)0

nên /x-3/=0

        x-3 =0

    \(\Rightarrow\)x=3

4 tháng 9 2017

1) Giải theo cách lớp 8 nhé: 
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng. 
(x + y)² >= 4xy 
(y + z)² >= 4yz 
(x + z)² >= 4xz 
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z² 
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0) 
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0. 
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*) 
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0 
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0 
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0 
<=> a - b + b - c + c - a = 0 
<=> 0 = 0 (1) 

5 tháng 1 2016

LẤY VÍ DỤ CỤ THỂ ĐI BẠN