Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
a) \(A\) nhỏ nhất \(\Leftrightarrow\) x + 1 nhỏ nhất và x - 3 lớn nhất Mà x thuộc N ; x - 3 \(\ne\) 0 nên \(\Leftrightarrow\) x = 4. Khi đó \(A=\frac{4+1}{4-3}=5\) có GTNNN
b) \(A=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\) nguyên \(\Leftrightarrow x-3\inƯ\left(4\right)\)
\(\Leftrightarrow x-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow x\in\left\{-1;1;2;4;5;7\right\}\)
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Để\(A\inℤ\)
thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)
a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)
Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.
Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)
Vậy:............
b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất
\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất
Khi đó : \(n-3\)nhỏ nhất
Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)
Vậy :......