Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số sau rút gọn được thì n - 1 phải chia hết cho n + 8
2n + 16 chia hết cho n - 1
=> 2n - 2 + 18 chia hết cho n -1
=> 2(n-1) + 18 chia hết cho n - 1
Vì 2(n-1) chia hết cho n - 1 nên 18 chia hết cho n-1
Hay n - 1 \(\in\)Ư(18)
Ư(18) = { 1,2,3,6,18,-1,-2,-3,-6,-18}
Lập bảng ra
a) \(A=\frac{2n-7}{n-2}=2\)
\(\Rightarrow A=\left(\frac{2\left(n-2\right)-3}{n-2}\right)=2\)
\(\Rightarrow n-2-3=2\)
\(\Rightarrow n-5=2\)
\(\Rightarrow n=2-5\)
\(\Rightarrow n=-3\)
b) Để \(max\frac{2n-7}{n-2}\Rightarrow max\left\{2n-7;n-2\right\}\)
\(\Rightarrow n=9\)
c) Để \(min\frac{2n-7}{n-2}\Rightarrow min\left\{2n-7;n-2\right\}\)
\(\Rightarrow n=-9\)
d) Để là phân số tối giản thì: \(\left(2n-7\right)-2\left(n-2\right)=1\)
\(\Rightarrow\left(2n-7\right)-\left(2n-4\right)=1\)
\(\Rightarrow n=3\)
d) Để A rút gọn được thì \(ƯCLN\left(2n-7,n-2\right)\ne1\)
\(\Rightarrow n-5\)không phải là số nguyên tố.
\(\Rightarrow n=\left\{1;-1;3;-3;7;-7;9;-9\right\}\)
Để C nguyên thì
\(n^2+2n-4⋮n+1\)
\(\Rightarrow n\left[n+1\right]+n-4⋮n+1\)
\(\Rightarrow n-4⋮n+1\)
\(\Rightarrow\left[n+1\right]-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
=> n + 1 \(\in U\left[5\right]\in\left\{-5;-1;1;5\right\}\)
=> \(n\in\left\{-6;-2;0;4\right\}\)
\(C=\frac{n^2+2n+1-5}{n+1}=\frac{\left(n+1\right)^2-5}{n+1}=\left(n+1\right)-\frac{5}{n+1}\)
để C nguyên thì phân số \(\frac{5}{n+1}\)nguyên \(\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n+1\le5\end{cases}\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n\le4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}}\end{cases}\Leftrightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n=0\\n=4\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)