Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)
a) \(\left(1^2+2^2+3^2+....+2012^2\right).\left(91-273:3\right)\)
\(=\left(1^2+2^2+3^2+...+2012^2\right).\left(91-91\right)\)
\(=0\)
b) \(\left(-284\right).172+\left(-284\right).\left(-72\right)=\left(-284\right).\left(172+-72\right)\)
\(=\left(-284\right).100\)
\(=-28400\)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
\(=\left(\frac{1}{5}+\frac{-1}{5}\right)+\left(\frac{1}{6}+\frac{-1}{6}\right)+\left(\frac{1}{7}+\frac{-1}{7}\right)+\left(\frac{1}{8}+\frac{-1}{8}\right)+\frac{1}{9}\)
\(=0+0+0+0+\frac{1}{19}\)
= 0
Bài 1:
a) Ta có: \(\frac{8}{40}+\frac{-4}{20}-\frac{3}{5}\)
\(=\frac{1}{5}+\frac{-1}{5}-\frac{3}{5}\)
\(=\frac{-3}{5}\)
b) Ta có: \(\frac{-7}{12}+\frac{-2}{12}-\frac{-3}{36}\)
\(=\frac{-7}{12}+\frac{-2}{12}-\frac{-1}{12}\)
\(=\frac{-9+1}{12}=\frac{-8}{12}=\frac{-2}{3}\)
c) Ta có: \(\left(\frac{1}{6}+\frac{-4}{13}\right)-\left(-\frac{17}{6}-\frac{30}{13}\right)\)
\(=\frac{1}{6}+\frac{-4}{13}+\frac{17}{6}+\frac{30}{13}\)
\(=3+2=5\)
d) Ta có: \(-\frac{-5}{4}+\frac{7}{4}-\frac{-11}{7}+\frac{2}{7}\)
\(=\frac{5}{4}+\frac{7}{4}+\frac{11}{7}+\frac{2}{7}\)
\(=3+\frac{13}{7}=\frac{21}{7}+\frac{13}{7}=\frac{34}{7}\)
e) Ta có: \(-\frac{1}{8}+\frac{-7}{9}+\frac{-7}{8}+\frac{6}{7}+\frac{2}{14}\)
\(=-1+1+\frac{-7}{9}\)
\(=-\frac{7}{9}\)
f) Ta có: \(\frac{-2}{9}-\frac{11}{-9}+\frac{5}{7}-\frac{-6}{-7}\)
\(=\frac{-2-\left(-11\right)}{9}+\frac{5-6}{7}\)
\(=1+\frac{-1}{7}=\frac{7}{7}+\frac{-1}{7}=\frac{6}{7}\)
\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}+\frac{1}{6}.\frac{1}{7}+\frac{1}{7}.\frac{1}{8}+\frac{1}{8}.\frac{1}{9}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(A=\frac{1}{2}-\frac{1}{9}\)
\(A=\frac{7}{18}\)
Vậy \(A=\frac{7}{18}\)
A = 1/2.3 + 1/3.4 + ..... +1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + ........ + 1/8 - 1/9
= 1/2 - 1/9
= 7/18
Tk mk nha
a) \(\frac{5}{9}:\frac{13}{7}+\frac{5}{9}:\frac{13}{9}-1\frac{2}{3}\\ =\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{3}\\ =\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}\right)-\frac{5}{3}\\ =\frac{5}{9}\cdot\frac{16}{13}-\frac{5}{3}\\ =\frac{80}{117}-\frac{5}{3}\\ =\frac{80}{117}-\frac{195}{117}=\frac{-115}{117}\)
b) \(\left(15-6\frac{13}{18}\right):11\frac{1}{27}-2\frac{1}{8}:1\frac{11}{40}\\ =\left(\frac{270}{18}-\frac{121}{18}\right):\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\\ =\frac{149}{18}\cdot\frac{27}{298}-\frac{17}{8}\cdot\frac{40}{51}\\ =\frac{3}{4}-\frac{5}{3}\\ =\frac{9}{12}-\frac{20}{12}=\frac{-11}{12}\)
A=1/255
vi 1/255 < 1/40 =>a<1/40