K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)

Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)

Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)

Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)

Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)

Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)

29 tháng 3 2016

tbc là trung bình cộng

29 tháng 3 2016

2013/2014 chứ!?

23 tháng 4 2016

Ta có:

Q=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013

Mà 2010/2011+2012+2013<2010/2011

      2011/2011+2012+2013<2011/2012

      2012/2011+2012+2013<2012/2013

=>Q<P

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

7 tháng 4 2016

\(\frac{a+b+c}{2011+2012+2013}=\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2011+2012+2013}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{ac}\right)}{2011+2012+2013}\ge\frac{a+b+c}{2011+2012+2013}\)

=> a =b =c= 0

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn

19 tháng 4 2016

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1