K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

a, ĐK : \(x\ne0;1\)

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(=\dfrac{x^2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x^2}{x-1}\)

b, Thay x = 3 vào A ta được : \(\dfrac{9}{2}\)

c, \(A=4\Rightarrow\dfrac{x^2}{x-1}=4\Rightarrow x^2=4x-4\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

d, \(A< 2\Rightarrow\dfrac{x^2}{x-1}-2< 0\Leftrightarrow\dfrac{x^2-2x+1}{x-1}< 0\Rightarrow x-1< 0\Leftrightarrow x>1\)

 

a,\(\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\dfrac{x}{x\left(x-1\right)}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x+1}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

18 tháng 6 2021

a) đk: x khác 0;1

 \(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b) Để \(\left|2x-5\right|=3\)

<=>  \(\left[{}\begin{matrix}2x-5=3< =>2x=8< =>x=4\left(c\right)\\2x-5=-3< =>2x=2< =>x=1\left(l\right)\end{matrix}\right.\)

Thay x = 4 vào A, ta có: 

\(A=\dfrac{4^2}{4-1}=\dfrac{16}{3}\)

c) Để A = 4

<=> \(\dfrac{x^2}{x-1}=4\)

<=> \(\dfrac{x^2}{x-1}-4=0< =>\dfrac{x^2-4x+4}{x-1}=0\)

<=> \(\left(x-2\right)^2=0\)

<=> x = 2 (T/m)

d) Để A < 2

<=> \(\dfrac{x^2}{x-1}< 2< =>\dfrac{x^2}{x-1}-2< 0< =>\dfrac{x^2-2x+2}{x-1}< 0\)

<=> \(\dfrac{\left(x-1\right)^2+1}{x-1}< 0\)

Mà \(\left(x-1\right)^2+1>0\)

<=> x - 1 < 0 <=> x < 1

KHĐK: x < 1 ( x khác 0)

 

18 tháng 6 2021

e) Để A thuộc Z

<=> \(\dfrac{x^2}{x-1}\in Z\)

<=> \(x^2⋮x-1\)

<=> \(x^2-x\left(x-1\right)-\left(x-1\right)⋮x-1\) 

<=> \(1⋮x-1\)

Ta có bảng: 

x-11-1
x20
 T/m

T/m

KL: Để A thuộc Z <=> \(x\in\left\{2;0\right\}\) 

f) Để A thuộc N <=> \(x\in\left\{2;0\right\}\) 

ĐKXĐ: \(x\notin\left\{2;-2;-1\right\}\)

a) Ta có: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\dfrac{3\left(x+1\right)}{x\left(x+2\right)}\)

\(=\left(\dfrac{x+4x+8}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{5x+8+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6x+6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)}{x-2}\cdot\dfrac{x}{3\left(x+1\right)}\)

\(=\dfrac{2x}{x-2}\)

b) Để A nguyên thì \(2x⋮x-2\)

\(\Leftrightarrow2x-4+4⋮x-2\)

mà \(2x-4⋮x-2\)

nên \(4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{0;1;3;4;6\right\}\)

Vậy: Khi \(x\in\left\{0;1;3;4;6\right\}\) thì A nguyên

a) Ta có: \(P=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)

\(=\dfrac{\left(2+x\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}:\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{x\left(2-x\right)}{x-3}\)

\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{x}{x-3}\)

\(=\dfrac{4x\left(x+2\right)}{x+2}\cdot\dfrac{x}{x-3}\)

\(=\dfrac{4x^2}{x-3}\)

a: \(C=\dfrac{5x+1+\left(2x-1\right)\left(x-1\right)+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2x^2+7x+3+2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{4}{x-1}\)

b: x=4 thì C=4/(4-1)=4/3

Khi x=-4 thì C=4/(-4-1)=-4/5

c: C>0

=>x-1>0

=>x>1

10 tháng 6 2023

camon ạaaaa<3

21 tháng 1 2021

undefined

21 tháng 1 2021

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

21 tháng 12 2022

`B17:`

`a)` Với `x \ne +-3` có:

`A=[x+15]/[x^2-9]+2/[x+3]`

`A=[x+15+2(x-3)]/[(x-3)(x+3)]`

`A=[x+15+2x-6]/[(x-3)(x+3)]`

`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`

`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)

   `=>` Ko có gtr nào của `x` t/m

`c)A in ZZ<=>3/[x-3] in ZZ`

   `=>x-3 in Ư_3`

 Mà `Ư_3={+-1;+-3}`

`@x-3=1=>x=4`

`@x-3=-1=>x=2`

`@x-3=3=>x=6`

`@x-3=-3=>x=0`

________________________________

`B18:`

`a)M=1/3`             `ĐK: x  \ne +-4`

`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`

`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`

`<=>32/[x-4].[x+4]/32=1/3`

`<=>3x+12=x-4`

`<=>x=-8` (t/m)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)

12 tháng 12 2021

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

8 tháng 12 2021

a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)