K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)

Lại có:

\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)

Vậy ...

Những dãy trên đều có 100 số hạng.

14 tháng 11 2017

Chúc bạn học tốt!

15 tháng 1 2022

\(C=\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2-1}\right)...\left(\dfrac{1}{101^2-1}\right)\)

\(C=\dfrac{1-200^2}{200^2}.\dfrac{1-199^2}{199^2}.\dfrac{1-198^2}{198^2}...\dfrac{1-101^2}{101^2}\)

\(C=\dfrac{\left(1-200\right)\left(1+200\right)}{200^2}.\dfrac{\left(1-199\right)\left(1+199\right)}{199^2}...\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}.\dfrac{\left(1-101\right)\left(1+101\right)}{101^2}\) \(C=\dfrac{-199.201}{200.200}.\dfrac{-198.200}{199.199}.\dfrac{-197.199}{198.198}...\dfrac{-99.101}{100.100}.\dfrac{-100.102}{101.101}\)

\(C=\dfrac{199.201}{200.200}.\dfrac{198.200}{199.199}.\dfrac{197.199}{198.198}...\dfrac{99.101}{100.100}.\dfrac{100.102}{101.101}\)

\(\Rightarrow C=\dfrac{200}{2.101}=\dfrac{201}{202}\)

Câu 2 mik chịu r sorry:(

15 tháng 1 2022

cám ơn bạn nha !

Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

=100

Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)

\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{8}{\dfrac{1}{5}}=40\)

\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}}{\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)}=1:\dfrac{1}{4}=4\)

1 tháng 11 2017

\(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(2A=1+1+\dfrac{3}{2^2}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\)

\(2A-A=\left(1+1+\dfrac{3}{2^2}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\right)\)

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Đặt:

\(B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)

\(2B=2+1+\dfrac{1}{2^2}+....+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)

\(2B-B=\left(2+1+\dfrac{1}{2^2}+....+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(B=2-\dfrac{1}{2^{99}}\)

Vậy \(A=2-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}< 2\)

1 tháng 11 2017

Bây giờ mình đang bận học bài 1 chút.Xíu nữa mình làm cho nhé