Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)
Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)
\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)
mà \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)
Áp dụng các bđt trên vào bài toán ta có
∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)∑\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)∑\(\frac{a+b+c}{a+b+c}=1\)
Bất đẳng thức được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm
\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)
Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)
\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)
\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)
\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)
cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link
Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ( biến đổi tương đương ) ta có
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\ge\frac{\frac{\left(a+b\right)^2}{2}}{2c}+\frac{\frac{\left(b+c\right)^2}{2}}{2a}+\frac{\frac{\left(c+a\right)^2}{2}}{2b}\)
\(=\frac{\left(a+b\right)^2}{4c}+\frac{\left(b+c\right)^2}{4a}+\frac{\left(c+a\right)^2}{4b}\)
+ \(\frac{\left(a+b\right)^2}{4c}+c\ge2\sqrt{\frac{\left(a+b\right)^2}{4c}\cdot c}=a+b\) Dấu "=" \(\Leftrightarrow a+b=2c\)
Viết các bđt tương tự rồi cộng vế theo vế là được
Dấu "=" <=> a=b=c
(a-b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c)^2 + (b+c-2a)^2 + (c+a-2b)^2
<=> (a+b-2c)^2 - (a-b)^2 + (b+c-2a)^2 - (b-c)^2 + (c+a-2b)^2 - (c-a)^2 = 0
<=> (2b-2c)(2a-2c) + (2c-2a)(2b-2a) + (2a-2b)(2c-2b) = 0
<=> (b-c)(a-c) + (c-a)(b-a) + (a-b)(c-b) = 0
<=> ab - ac - bc + c^2 + bc - ab - ac - a^2 + ac - bc - ab + b^2 = 0
<=> a^2 + b^2 + c^2 - ab - bc - ac = 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ac + a^2) = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> (a-b)^2=0; (b-c)^2=0; (c-a)^2=0
<=> a-b=0; b-c=0; c-a=0
<=> a=b=c (đpcm)
Ta có: (a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2=(a-c+b-c)2+(b-a+c-a)2 +(c-b+a-b)2.
Đặt a-b=x; b-c=y; c-a=z thì ta có:x+y+z=0,→ x2+y2+z2=(y-z)2+(z-x)2+(x-y)2=2(x2 +y2 +z2)-2(yz+xz+yx)
→x2 +y2 +z2+2(xy+yz+xz)=2(x2 +y2 +z2)
hay(x+y+z)2=2(x2 +y2 +z2). Mà x+y+z=0 nên→ x2+y2+z2=0,
→(a-b)2+(b-c)2 +(c-a)2=0↔a-b=b-c=c-a=0→a=b=c(đpcm)