K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)

\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)

\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)

Đáp án C.

11 tháng 5 2016

\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}=\frac{1+2\log_2a+\log_2a\left(\log_2a+1\right)+8\log^2_2a}{3\log_2a.\left(3\log_2a+1\right)+1}\)

    \(=\frac{9\log^2_2a+3\log_2a+1}{9\log^2_2a+3\log_2a+1}=1\)

2 tháng 1 2019

5 tháng 4 2018

Do a, b, x là những số dương nên ta có:

A = 3 b

22 tháng 6 2019

Bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html