K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}=\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{\left(a-b\right)\left(a^3-b^3\right)}{a^2b^2}=\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\)

ta có \(\left(a-b\right)^2\ge0;a^2+ab+b^2>0;a^2b^2>0\)

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)

5 tháng 10 2018

Vào câu hỏi tương tự đi

5 tháng 10 2018

Ta có: a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

=> 14 + 2(ab + bc + ac) = 0

=> 2ab + 2bc + 2ac = -14

=> (2ab + 2bc + 2ac)2 = 196

=> 4a2b2 + 4a2c2 + 4b2c2 + 8ab2c + 8a2bc + 8abc2 = 196

=> 4(a2b2 + b2c2 + c2a2) + 8abc(b + a + c) = 196

=> 4(a2b2 + b2c2 + c2a2) = 196

=> 2(a2b2 + b2c2 + c2a2) = 98

Có: a2 + b2 + c2 = 14

=> (a2 + b2 + c2)2 = 196

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 196

Mà 2(a2b2 + b2c2 + a2c2) = 98

=> a4 + b4 + c4 = 98

Vậy a4 + b4 + c4 = 98

25 tháng 7 2021

\(1,a,A=\frac{356^2-144^2}{256^2-244^2}=\frac{\left(356-144\right)\left(356+144\right)}{\left(256-244\right)\left(256+244\right)}=\frac{212.500}{12.500}\)

\(A=\frac{212}{12}=\frac{53}{3}\)

\(b,B=253^2+94.253+47^2\)

\(B=\left(253+47\right)^2=300^2=90000\)

Bài 2

\(a,x^2-16x=-64\)

\(x^2-16x+64=0\)

\(\left(x-8\right)^2=0\)

\(x=8\)

\(b,\left(x+2\right)^2+4\left(x+2\right)+2=0\)

\(x^2+4x+4+4x+8+2=0\)

\(x^2+8x+14=0\)

\(\sqrt{\Delta}=\sqrt{\left(8^2\right)-\left(4.1.14\right)}=2\sqrt{3}\)

\(x_1=\frac{2\sqrt{3}-8}{2}=\sqrt{3}-4\)

\(x_2=\frac{-2\sqrt{3}-8}{2}=-\sqrt{3}-4\)

21 tháng 9 2019

Vì a , b > 0 \(\Rightarrow a^3+b^3>a^3>a^3-b^3\) theo giả thiết ta có :

\(a-b>a^3-b^3\Leftrightarrow\left(a-b\right)>\left(a-b\right)\left(a^2+ab+b^2\right)\)

                                     \(\Leftrightarrow1>a^2+ab+b^2>a^2+b^2\)

                                       \(\Leftrightarrow1>a^2+b^2\left(đpcm\right)\)

     Chúc bạn học tốt !!!

21 tháng 9 2019

giải

Vì a , b > 0 \Rightarrow a^3+b^3>a^3>a^3-b^3⇒a3+b3>a3>a3−b3 theo giả thiết ta có :

a-b>a^3-b^3\Leftrightarrow\left(a-b\right)>\left(a-b\right)\left(a^2+ab+b^2\right)a−b>a3−b3⇔(a−b)>(a−b)(a2+ab+b2)

                                     \Leftrightarrow1>a^2+ab+b^2>a^2+b^2⇔1>a2+ab+b2>a2+b2

                                       \Leftrightarrow1>a^2+b^2\left(đpcm\right)⇔1>a2+b2(đpcm)