K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

O thuộc a và a//b nên O cách b một khoảng 2cm => (O;2cm) tiếp xúc với b

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

a) Ta có:

$\widehat{MAK}=\widehat{ACE}$ (góc tạo bởi tiếp tuyến và dây cung bằng góc nt chắn cung đó)

$AC\parallel MB$ nên $\widehat{ACE}=\widehat{EMK}$ (so le trong)

$\Rightarrow \widehat{MAK}=\widehat{EMK}$

Xét tam giác $MAK$ và $EMK$ có:

$\widehat{MAK}=\widehat{EMK}$ (cmt)

$\widehat{K}$ chung

$\Rightarrow \triangle MAK\sim \triangle EMK$ (g.g)

$\Rightarrow \frac{MK}{AK}=\frac{EK}{MK}\Rightarrow MK^2=AK.EK$

b) 

Hoàn toàn tương tự, dễ thấy $\triangle KEB\sim \triangle KBA$ (g.g)

$\Rightarrow \frac{KE}{KB}=\frac{KB}{KA}\Rightarrow KB^2=AK.EK$

Kết hợp với phần 1) suy ra $KB^2=MK^2\Rightarrow KB=MK$ (đpcm)

 

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

1 tháng 3 2021

câu 1 là MB2 =AK.EK nha

 

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: Xét ΔIBF và ΔIAB có

góc IBF=góc IAB

góc BIF chung

=>ΔIBF đồng dạng với ΔIAB

=>IB/IA=IF/IB

=>IB^2=IA*IF

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng