Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O thuộc a và a//b nên O cách b một khoảng 2cm => (O;2cm) tiếp xúc với b
Lời giải:
a) Ta có:
$\widehat{MAK}=\widehat{ACE}$ (góc tạo bởi tiếp tuyến và dây cung bằng góc nt chắn cung đó)
$AC\parallel MB$ nên $\widehat{ACE}=\widehat{EMK}$ (so le trong)
$\Rightarrow \widehat{MAK}=\widehat{EMK}$
Xét tam giác $MAK$ và $EMK$ có:
$\widehat{MAK}=\widehat{EMK}$ (cmt)
$\widehat{K}$ chung
$\Rightarrow \triangle MAK\sim \triangle EMK$ (g.g)
$\Rightarrow \frac{MK}{AK}=\frac{EK}{MK}\Rightarrow MK^2=AK.EK$
b)
Hoàn toàn tương tự, dễ thấy $\triangle KEB\sim \triangle KBA$ (g.g)
$\Rightarrow \frac{KE}{KB}=\frac{KB}{KA}\Rightarrow KB^2=AK.EK$
Kết hợp với phần 1) suy ra $KB^2=MK^2\Rightarrow KB=MK$ (đpcm)
1: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
2: Xét ΔIBF và ΔIAB có
góc IBF=góc IAB
góc BIF chung
=>ΔIBF đồng dạng với ΔIAB
=>IB/IA=IF/IB
=>IB^2=IA*IF
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
Kẻ OH ⊥ a tại H
Ta có OH=3cm < R nên a cắt (O) tại hai điểm phân biệt