K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2023

Náy mình bị lỗi bạn bỏ cái này đi nhé. CHỉ giữ 1 cái thôi máy mình nó ra tần 4 cái

2 tháng 7 2023

`a^3+b^3-6ab=-11<=>(a+b)^3-3ab(a+b)-6ab=-11<=>(a+b)^3-3ab(a+b+2)=-11`

Đặt `{(S=a+b),(P=ab):}`

Khi đó ta có `S^3-3P(S+2)=-11<=>(4(S^3+11))/(3(S+2))=4P`

Lại có `S^2>=4P` nên `S^2>=(4(S^3+11))/(3(S+2))`

`<=>(S^3-6S^2+44)/(3(S+2))<=0(S\ne-2)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH2: `{(S^3-6S^2+44>=0),(3(S+2)<0):}<=>{(S>=-2,30213805),(S< -2):}<=>-2,30213805<S<-2`

mà `-7/3=-2,33333...<-2,30213805` nên `-7/3<S<-2(đfcm)`

 

 

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

NV
5 tháng 3 2022

Ta có:

\(\dfrac{1}{a+3b}+\dfrac{1}{c+3}\ge\dfrac{4}{a+3b+c+3}=\dfrac{4}{2b+6}=\dfrac{2}{b+3}\)

Tương tự: 

\(\dfrac{1}{b+3c}+\dfrac{1}{a+3}\ge\dfrac{2}{c+3}\)

\(\dfrac{1}{c+3a}+\dfrac{1}{b+3}\ge\dfrac{2}{a+3}\)

Cộng vế:

\(\sum\dfrac{1}{a+3b}+\sum\dfrac{1}{a+3}\ge\sum\dfrac{2}{a+3}\)

\(\Rightarrow\sum\dfrac{1}{a+3b}\ge\sum\dfrac{1}{a+3}\) (đpcm)

28 tháng 2 2021

`1/a+1/b+1/c=1/(a+b+c)`

`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`

`<=>(a+b)(ab+ac+bc+c^2)=0`

`<=>(a+b)(a+c)(b+c)=0`

`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$

`=>` PT luôn tồn tại 2 số đối nhau