Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
a^2/b+b^2/a>=a+b
=>a^3+b^3>=ab(a+b)
=>a^3+b^3-a^2b-ab^2>=0
=>a^2(a-b)+b^2(b-a)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
\(\left(a+b\right)\left(\frac{a}{b}+\frac{b}{a}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)=\frac{\left(a+b\right)^2}{ab}=\frac{a^2+b^2+2ab}{ab}>=\frac{4ab}{ab}=4\)
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT cô si ,ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)
Vậy ta được đpcm
ta có:
\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)
Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha
với a,b,c là các số lớn hơn 1 . áp dugj bđt Cô-si ta có :
\(\frac{a^2}{b+1}+4\left(b-1\right)>=4a\)
cmtt: => đpcm
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
xét hiệu
\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)
<=>\(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}\ge0\)
<=> ab+b2+a2+ab ≥ 0
<=> a2+2ab+b2 ≥ 0
<=> (a+b)2 ≥ 0 (luôn đúng với mọi a,b)
=> đpcm