K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

tích mik nhé

12 tháng 9 2016

Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.

Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
 

\

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

15 tháng 9 2016

Gọi ƯCLN của a‐c và b‐c là d

Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1

Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2

﴾ p; q là các số nguyên﴿

c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.

27 tháng 11 2016

Từ gt => (a-c)(b-c) = c^2 (*) 
Gọi d là ước của a-c và b-c thì từ (*) ta có c^2 chia hết cho d => c chia hết cho d .

Do a-c ; b-c và c chia hết cho d nên a,b,c là bội của d => d=1 vì a.b.c nguyên tố cùng nhau.

Vậy a-c và b-c là số chính phương.
Đặt a-c = k^2, b-c = m^2 ( k,m thuộc N) từ (*) => c^2 = k^2m^2 
c= km
Mặt khác a+b= a-c +b-c +2c = k^2 +m^2+2km =(k+m)^2
Vậy a+b là số chính phương.


5 tháng 10 2019

a+b=ab/c là một số nguyên, mà a, b, c nguyên tố cùng nhau từng đôi một=> a+b =ab (vô lí) 

24 tháng 10 2015

Ta có bổ đề sau: Với a,b nguyên sao cho a.b=n2 mà (a,b)=1 thì a,b là số chính phương

Ta có: (a+b)c=ab \(\Rightarrow\) ab-ac-bc=0 \(\Rightarrow\) ab-ac-bc+c2=c\(\Rightarrow\) (a-c)(b-c)=c (*)

Gọi  d là ƯCLN của (a-c) và (b-c) ta có:

a-c chia hết cho d ; b-c chia hết cho d. Mặt khác từ (*) ta có: c2 chia hết cho d2 \(\Rightarrow\) c chia hết cho d

nên a,c cũng chia hết cho d mà (a,b)=1 nên d=1. nên a-c; b-c là hai số chính phương

Đặt a-c=m2;b-c=n2 (m,n tự nhiên) \(\Rightarrow\) c2=m2n2 \(\Rightarrow\)c=mn

nên a-c+b-c=m2+n2\(\Rightarrow\)a+b=m2+n2+2c=m2+n2+2mn=(m+n)2

21 tháng 9 2015

Giả sử rằng \(\left(x,y\right)\) là nghiệm nguyên của phương trình \(ax+by=c.\) Suy ra \(a\left(x+y\right)+y\left(b-a\right)=c.\) Vì \(b-a\vdots c\to a\left(x+y\right)\vdots c\). Mà \(a,c\) là hai số nguyên tố cùng nhau nên \(x+y\vdots c.\)

10 tháng 12 2018

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................