Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)
\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)
*TH1: nếu a+b+c=0 => a+b=-c; b+c=-a; c+a=-b
=>P=\(\left(\frac{b+c}{b}\right)\left(\frac{a+b}{a}\right)\left(\frac{c+a}{c}\right)\)
=\(\frac{-a}{b}.\frac{-c}{a}.\frac{-b}{c}=\frac{-\left(a.b.c\right)}{a.b.c}=-1\)
*TH2: Nếu a+b+c khác 0: thì a=b=c
Khi đó P=2.2.2=8
Vậy P= -1 hoặc 8
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=> 2a-2b+2c=2b <=> a+c=2b. Chia cả 2 vế cho c ta được: \(1+\frac{a}{c}=\frac{2b}{c}\)
Tương tự: \(1+\frac{c}{b}=\frac{2a}{b}\) và \(1+\frac{b}{a}=\frac{2c}{a}\)
=> \(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)=\frac{2a}{b}.\frac{2c}{a}.\frac{2b}{c}=\frac{8.abc}{abc}=8\)
Đáp số: 8
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(dãy tỉ số bằng nhau)
=> a = b = c
Khi đó \(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)\)
= (1 + 2)(1 + 2)(1 + 2) = 3.3.3 = 27
Vậy P = 27
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( do a + b + c khác 0 )
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow a=b=c\)
Thế vào P ta được :
\(P=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
+ Từ \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow3a-2b=c\) và \(3a-c=2b\)
+ Tương tự ta cũng có \(3b-2c=a\) và \(3b-a=2c\)
Và \(3c-2a=b\); \(3c-b=2a\)
Thay vào P
\(P=\frac{c.a.b}{2.b.2.c.2.a}=\frac{1}{8}\)
Ta có: a+b+c=0a+b+c=0
\Rightarrow b+a=-c⇒b+a=−c
\Rightarrow c+b=-a⇒c+b=−a
\Rightarrow a+c=-b⇒a+c=−b
Ta có: A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)A=(1+
b
a
)(1+
c
b
)(1+
a
c
)
\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)⇒A=(
b
b+a
)(
c
c+b
)(
a
a+c
)
\Rightarrow A=\left(\frac{-c}{b}\right)\left(\frac{-a}{c}\right)\left(\frac{-b}{a}\right)⇒A=(
b
−c
)(
c
−a
)(
a
−b
)
\Rightarrow A=-1⇒A=−1