K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

30 tháng 6 2017

Bunhia thì phải hoặc tương đương thần chưởng @@
Có lẽ bunhia đấy :vv

30 tháng 6 2017

Câu này t dùng vi-et giải được. Nhưng để mai đi. Giờ giải bằng điện thoại thì khó quá

7 tháng 8 2019

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

kết bạn với mình không

NV
24 tháng 6 2020

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)

Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

26 tháng 12 2015

\(VT=\sum\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\sum\frac{ab}{\sqrt{\left(b+c\right)\left(c+a\right)}}\le\sum\frac{ab}{2}\left(\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\frac{1}{2}\left[\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right]=\frac{1}{2}\left(a+b+c\right)=1\)

4 tháng 7 2017

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

21 tháng 2 2019

\(VT=\sqrt{\frac{ab+2c^2}{a^2+ab+b^2}}+\sqrt{\frac{bc+2a^2}{b^2+bc+c^2}}+\sqrt{\frac{ca+2b^2}{c^2+ca+a^2}}\)

\(=\frac{ab+2c^2}{\sqrt{\left(a^2+ab+b^2\right)\left(ab+2c^2\right)}}+\frac{bc+2a^2}{\sqrt{\left(b^2+bc+c^2\right)\left(bc+2a^2\right)}}+\frac{ca+2b^2}{\sqrt{\left(c^2+ca+a^2\right)\left(ca+2b^2\right)}}\)

\(\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2c^2+2ab}+\frac{2\left(bc+2a^2\right)}{2a^2+b^2+c^2+2bc}+\frac{2\left(ca+2b^2\right)}{a^2+2b^2+c^2+2ca}\)

\(\ge\frac{ab+2c^2}{a^2+b^2+c^2}+\frac{bc+2a^2}{a^2+b^2+c^2}+\frac{ca+2b^2}{a^2+b^2+c^2}=ab+bc+ca+2\left(a^2+b^2+c^2\right)\)

\(=2+ab+bc+ca=VP\) (Do a2 + b2 + c2 = 1) => ĐPCM.

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{\sqrt{3}}.\)

12 tháng 11 2020

chăc là .............................. điền đi sẽ biếc a you ok ?

30 tháng 10 2016

Ta có:\(a^5+ab+b^2\ge3a^2b\)

Tương tự ta có:

\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)

\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)

Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)

\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)

Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)

\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

Giả sử \(xy\le1\) thì \(z\ge1\)

Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)

\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)

Dấu = khi \(a=b=c=1\)

30 tháng 10 2016

sao chứng minh đc \(a^5+ab+b^2\ge3a^2b\)vậy bạn