K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b 
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a ) 
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c) 
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a) 
= b ( a-b)(a-c) - c ( a-b)(c-a) 
= ( b-c)(a-b)(a-c) 
=> P = (b-c)(a-b)(a-c) / abc 
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a 
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a) 
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c) 
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c) 
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a) 
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b) 
Q = - 3bc(a-b) + 3bc(c-a) 
Q = 3bc ( b+c-2a) 
Q = -9abc 
Suy ra => Q = 9abc / (a-b)(b-c)(c-a) 
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi) 
P*Q = 9 ( đpcm) 
**************************************... 
Chúc bạn học giỏi và may mắn

ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra

Chúc hok tốt

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

20 tháng 2 2018

khó quá xem trên mạng

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?