K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

tui làm đc là phải tịk nha!

a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0

23 tháng 4 2017

Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

NV
2 tháng 3 2023

Do \(0\le a;b;c\le2\) 

\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị

8 tháng 6 2016

A = ab + bc + cd < ab + ad + bc + cd = ( a + c ) ( b + d )

Áp dụng bất đẳng thức xy <  (\(\frac{x+y}{2}\) )2 ta có

A = ( a+ c ) ( b+ d ) <  ( \(\frac{a+c+b+d}{2}\) )2 = \(\frac{1}{4}\) 

A = \(\frac{1}{4}\)  \(\Leftrightarrow\)  \(\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\) 

Vậy max A = \(\frac{1}{4}\)  khi a= b = \(\frac{1}{2}\)  , c = d = 0

3 tháng 1 2019

Qúa dễ luôn 

Ta có : a x 2 + b x 2 + c x 2 \(\le\) 5 

           2 x ( a + b + c )        \(\le\)5

               a + b + c              \(\le\) 5/2 

               a + b + c              \(\le\) 2,5 

Mà theo đề bài : a + b + c không lớn hơn 2 ( có nghĩa là bé hơn 2 ) . Nên a + b + c phải luôn luôn bé hơn 2,5 ( vì 2 luôn bé hơn 2,5 ) 

Vậy : a x 2 + b x 2 + c x 2 \(\le\) 5 

22 tháng 4 2017

Số abc là 176

6 tháng 11 2016

\(A=ab+bc+cd\le ab+ad+bc+cd=\left(a+c\right)\left(b+d\right)\)

Áp dụng bất đẳng thức \(xy\le\left(\frac{x+y}{2}\right)^2\) ta có :

\(A=\left(a+c\right)\left(b+d\right)\le\left(\frac{a+c+b+d}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}\Leftrightarrow\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\)

Vậy \(Max_A=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2},c=d=0\)

6 tháng 11 2016

Không mất tính tổng quát , giả sử \(a\ge b\ge c\ge d\)

Khi đó : \(A=ab+bc+cd\le ab+ac+ad=a\left(b+c+d\right)=a\left(1-a\right)\)

\(a\left(1-a\right)=-a^2+a=-\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra \(A\le\frac{1}{4}\).

Vậy MaxA = 1/4

(Với cách này không cần chỉ ra đẳng thức xảy ra vẫn được :)