K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

Lỗi

NV
15 tháng 3 2022

Ta có:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}=2b\)

Tương tự: \(\dfrac{ab}{c}+\dfrac{ca}{b}\ge2a\) ; \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2c\)

Cộng vế:

\(2P\ge2\left(a+b+c\right)\Rightarrow P\ge a+b+c=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

3 tháng 12 2018

sai đề

26 tháng 10 2016

sao toàn toán lớp 9 thế

26 tháng 10 2016

\(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự và cộng lại, ta có:\(p\ge a+b+c-\frac{ab+bc+ca}{2}\) mà 3(ab+bc+ca)\(\le\)(a+b+c)^2=9

=>ab+bc+ca\(\le\)3

=> \(p\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu = xảy ra =>a=b=c=1

6 tháng 4 2020

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

7 tháng 4 2020

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right) \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...