K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)

c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)

\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

4 tháng 2 2022

đề như thế thì đương nhiên phải có điều kiện đó chứ em, đề đúng rồi anh xin xóa câu trl 

4 tháng 2 2022

1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.

\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)

\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)

\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)

\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)

\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)

\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)

\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)

\(x^2-ax-bx+ab=0\)

\(x\left(x-a\right)-b\left(x-a\right)\)

\(\left(x-a\right)\left(x-b\right)=0\)

\(x=a\) hay \(x=b\)

-Vậy \(S=\left\{a;b\right\}\)