K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

Ta có a3 + b3 +c3 -3abc = (a+b)-3ab(a+b) - 3abc + c3 
                                    = (a+b+c)[(a+b)2 -c(a+b) +c2 ] -3ab(a+b+c)

                                    = 1/2 (a+b+c)(2a2 +2b2 +2c2 -2ab-2bc-2ac)

                                    = 1/2 (a+b+c) [(a-b)2 +(b-c)2 + (c-a)2 ] 

                                    =0 ( vì bài dài nên mk nhắc giải thích bạn tự hiểu nhé)

=> a+b+c=0 hoặc a=b=c

Th1: a+b+c=0 => b-c=-a; c-a=-b; a-b=-c

=> P= 1

Th2 : a=b=c Loại (vì mẫu ko thể bằng không)

Vậy P=1

bài làm còn sơ sài mong bạn thông cảm

  

7 tháng 10 2016

Online Math sai rồi nhé.

a + b + c = 0 thì b + c mới là - a

ĐÚng là b - c = -a - 2c

Tương tự với c - a, a - b

Em tính ra , băn khoăn mỗi chỗ đó nên mới không làm được bài toán này. 

29 tháng 12 2017

Ta có:
\(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}=-2\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{a}{c}+1\right)+\left(\frac{b}{a}+\frac{b}{c}+1\right)+\left(\frac{c}{a}+\frac{c}{b}+1\right)=1\)
\(\Leftrightarrow a\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)+b\left(\frac{1}{a}+\frac{1}{c}+\frac{1}{b}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)(1)
Mặt khác:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\)
\(\Rightarrow\frac{\left(a+b+c\right)^3}{abc}=\frac{1}{abc}+3\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\right)+6\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^3}{abc}=\frac{1}{abc}+3.\left(-2\right)+6\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^3}{abc}=\frac{1}{abc}\)
\(\Leftrightarrow\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a+b+c=1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\left(đpcm\right)\)

 

30 tháng 12 2017

bạn cho mình hỏi thê thì dữ liệu a^3+b^3+c^3 không được dùng à

31 tháng 5 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ca=0\)

Mà \(\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=0\)

Ta lại có:

\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{\left(a^6+b^6+c^6-3a^2b^2c^2\right)+3a^2b^2c^2}{\left(a^3+b^3+c^3-3abc\right)+3abc}\)

\(=\frac{\left(a^2+b^2+c^2\right)\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)+3a^2b^2c^2}{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}\)

\(=\frac{3a^2b^2c^2}{3abc}=abc\)

15 tháng 3 2017

Cách khác: Áp dụng BĐT AM-GM ta có: 

\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)

\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)

Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)

\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)

Còn tỷ tỷ cách đây cần thì IB nhé !!

15 tháng 3 2017

Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Thật vậy ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)

\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)

Đẳng thức xảy ra khi a=b=c=1/3

15 tháng 3 2017

Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)

\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Áp dụng vào ta có:

\(\left(1+\frac{1}{a} \right)\left(1+\frac{1}{b} \right)\left(1+\frac{1}{c} \right)=\dfrac{(1+a)(1+b)(1+c)}{abc} \geq \dfrac{(1+\sqrt[3]{abc})^3}{abc} \geq 64\)
Từ \(a+b+c=1 \Rightarrow abc\le \frac{1}{27}\) \(\Rightarrow \dfrac{(1+\sqrt[3]{abc})^3}{abc}=\bigg(\dfrac{1}{\sqrt[3]{abc}}+1\bigg)^3 \geq 64\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

15 tháng 3 2017

có tất cả loại cách từ cấp 2 đến cấp 3 cần thêm cứ bảo

8 tháng 7 2017

Ta có: \(\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{a^5+b^5+c^5+a^3\left(b^2+c^2\right)+b^3\left(a^2+c^2\right)+c^3\left(a^2+b^2\right)}{6}\)

\(=\frac{a^5+b^5+c^5+a^3\left(\left(b+c\right)^2-2bc\right)+b^3\left(\left(c+a\right)^2-2ca\right)+c^3\left(\left(a+b\right)^2-2ab\right)}{6}\)

\(=\frac{a^5+b^5+c^5+a^3\left(a^2-2bc\right)+b^3\left(b^2-2ca\right)+c^3\left(c^2-2ab\right)}{6}\)

\(=\frac{\left(a^5+b^5+c^5\right)-abc\left(a^2+b^2+c^2\right)}{3}\)

Ma ta lại có: 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{3\left(a^5+b^5+c^5\right)-\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{9}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{3\left(a^5+b^5+c^5\right)-\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{9}\)

\(\Leftrightarrow\frac{5\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{18}=\frac{\left(a^5+b^5+c^5\right)}{3}\)

\(\Leftrightarrow\frac{\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{6}=\frac{\left(a^5+b^5+c^5\right)}{5}\) (ĐPCM)

6 tháng 3 2018

Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)

⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0

Đến đây suy ra ĐPCM