K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Giải nè: 
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc]))) 
Ta có: 
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên) 
=abc.3/(abc)=3 
Cách II: 
Từ giả thiết suy ra: 
(1/a +1/b)³=-1/c³ 
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...‡ 
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc.3/(abc)=3

31 tháng 12 2019

Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath

Bài làm đúng.

9 tháng 5 2020

https://olm.vn/hoi-dap/detail/81117789731.html

bạn tham khảo

9 tháng 5 2020

Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)

Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.

 

6 tháng 11 2017

Bài 5 nha:

   \(a+\frac{1}{b}=b+\frac{1}{c}\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}.\)

\(\Leftrightarrow\left(a-b\right)=\frac{b-c}{bc}_{\left(1\right)}\)

\(a+\frac{1}{b}=c+\frac{1}{a}\Leftrightarrow a-c=\frac{1}{a}-\frac{1}{b}\)

\(\Leftrightarrow\left(a-c\right)=\frac{b-a}{ab}_{\left(2\right)}\)

\(c+\frac{1}{a}=b+\frac{1}{c}\Leftrightarrow c-b=\frac{1}{c}-\frac{1}{a}\)

\(\Leftrightarrow\left(c-b\right)=\frac{a-c}{ac}_{\left(3\right)}\)

Nhân từng vế của (1) ; (2) và (3) , ta được :

        \(\left(a-b\right)\left(a-c\right)\left(c-b\right)=\frac{\left(b-c\right)\left(b-a\right)\left(a-c\right)}{\left(abc\right)^2}\)

                                                              \(=\frac{\left(c-b\right)\left(a-b\right)\left(a-c\right)}{\left(abc\right)^2}\)

\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow abc=1\)hoặc \(abc=\left(-1\right)\)

6 tháng 11 2017

Bài 3:

  Ta có : \(x^2+y^2+z^2=1\Leftrightarrow\left(x+y+z\right)^2\)

                                        \(=1+2\left(xy+yz+zx\right)\Leftrightarrow1=1+2\left(xy+yz+zx\right)\)

             \(\Leftrightarrow xy+yz+zx=0\)(*)

             áp dụng kết quả sau :

  Ta có : \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

  Thấy vậy : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\left(ab+bc+ca\right)\right)-3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\left(a+b+c\right)^33\left(a+b+c\right)\left(ab+bc+ca\right)\)

                                                   \(=\left(a+b+c\right)\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

         áp dụng vào bài toán, ta có :

\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(=\frac{1}{2}\left(x+y+z\right)\left(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\right)\)

\(\Leftrightarrow1-3xyz=\frac{1}{2}\times1\times2=1\Leftrightarrow xyz=0\)(**)

Mà \(x+y+z=1\)(***)

\(\Leftrightarrow\)x ; y ; z là 3  nghiệm của pt bậc 3 sau : \(U^3-U^2=0\)

\(\Leftrightarrow U=0\)hoặc \(U=1\)

=> 1 trong 3 phần tử x ; y ; z =1 ; 2 phần tử còn lại sẽ = 0

Do đó \(x+y^2+z^3=1\)

   => điều phải chứng minh.

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

24 tháng 10 2019

Đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\left(x;y;z>0\right)\). Thay vào và quy đồng từng đẳng thức ta được

xy2+y=xyz+x

yz2+z=xyz+y

x2z+x=xyz+z

cộng 3 đẳng thức trên ta được 3xyz = xy2+yz2+zx2 \(\ge3\sqrt[3]{xy^2.yz^2.zx^2}=3xyz\)

dấu '=' khi \(xy^2=yz^2=zx^2< =>x=y=z\) hay a=b=c

Vậy không nhất thiết abc=1