K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a}{671b+c}=\frac{b}{671c+a}=\frac{c}{671a+b}=\frac{a+b+c}{\left(671b+c\right)+\left(671c+a\right)+\left(671a+b\right)}=\frac{a+b+c}{672.\left(a+b+c\right)}=\frac{1}{672}\)

\(\frac{a}{671b+c}=\frac{1}{672}\Rightarrow672a=671b+c\)

\(\frac{b}{671c+a}=\frac{1}{672}\Rightarrow672b=671c+a\)

\(\frac{c}{671a+b}=\frac{1}{672}\Rightarrow672c=671a+b\)

\(\Rightarrow A=\frac{671b+c}{a}+\frac{671c+a}{b}+\frac{671a+b}{c}\)

\(A=\frac{672a}{a}+\frac{672b}{b}=\frac{672c}{c}=671a+671b+671c=671\left(a+b+c\right)\)

Đặt a/b=b/c=c/a=k

=>a=bk; b=ck; c=ak

=>a=bk; b=ak*k=ak^2; c=ak

=>a=ak^3; b=ak^2; c=ak

=>k=1

=>a=b=c

\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)

4 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

5 tháng 12 2021

Cảm ơn bn.