Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
\(\Rightarrow\frac{2a+b+c}{a}-1=\frac{a+2b+c}{b}-1=\frac{a+b+2c}{c}-1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Mà \(a,b,c\ne0\)
=> a = b= c
\(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}\)
\(=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)
\(=2+2+2=6\)
a) do a/b>c/d (b>0,d>0)
=> ad>bc => ad+ab>bc+ab
a.(d+b)>b(c+a) => a/b=c+a/b+d (1)
tương tự cộng với cd là xong
b) 1/3<15/48,14/48,13/68<1/4
https://olm.vn/hoi-dap/detail/211794512831.html
Tham khảo ở link này (mình gửi cho)
Học tốt!!!!!!!!!!
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\Rightarrow a=b=c=d\)
Ta có: \(VT=a.b^{19}.c^{1999}=d.d^{19}.d^{1999}=d^{2019}=VP\)(đpcm)
a+b+c = 0 => a+b=-c ; b+c=-a ; c+a=-b
=> (1+a/b).(1+b/c).(1+c/a) = a+b/b . b+c/c . c+a/a = -c/b . (-a)/c . (-b)/a = -abc/abc = -1
k mk nha