Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
a)Áp dụng AM-GM có:
\(a\sqrt{b-1}\le a.\dfrac{b-1+1}{2}=\dfrac{ab}{2}\)
\(b\sqrt{a-1}\le b.\dfrac{a-1+1}{2}=\dfrac{ab}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\dfrac{ab}{2}+\dfrac{ab}{2}\)
\(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Dấu "=" xảy ra khi a=b=2
b)Áp dụng bđt bunhiacopxki có:
\(\left(\sqrt{ac}+\sqrt{bd}\right)^2=\left(\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{d}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]=\left(a+b\right)\left(c+d\right)\)
\(\Rightarrow\sqrt{ac}+\sqrt{bd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{a}}{\sqrt{c}}=\dfrac{\sqrt{b}}{\sqrt{d}}\Leftrightarrow ad=bc\)
\(b,\) Áp dụng BĐT Bunhiacopski:
\(\left(a+b\right)\left(c+d\right)=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]\\ \ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
Dấu \("="\Leftrightarrow ad=bc\)
Lời giải:
Ta có:
\(\sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow (a+b)(c+d)\geq (\sqrt{ac}+\sqrt{bd})^2\)
\(\Leftrightarrow ac+ad+bc+bd\geq ac+bd+2\sqrt{acbd}\)
\(\Leftrightarrow ad+bc-2\sqrt{acbd}\geq 0\)
\(\Leftrightarrow (\sqrt{ad}-\sqrt{bc})^2\geq 0\) (luôn đúng)
Ta có đpcm. Dấu "=" xảy ra khi $ad=bc$
Hoặc có thể áp dụng trực tiếp BĐT Bunhiacopxky:
\((a+b)(c+d)=[(\sqrt{a})^2+(\sqrt{b})^2][(\sqrt{c})^2+(\sqrt{d})^2]\)
\(\geq (\sqrt{ac}+\sqrt{bd})^2\)
\(\Rightarrow \sqrt{(a+b)(c+d)}\geq \sqrt{ac}+\sqrt{bd}\) (đpcm)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
Áp dụng Bđt Bunhiacopski, ta có:
\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
b: \(A=\dfrac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\dfrac{1}{\sqrt{x^2+4}}>=2\sqrt{\sqrt{x^2+4}\cdot\dfrac{1}{\sqrt{x^2+4}}}=2\)
a: =>ab+ad+bc+cd>=ab+cd+2căn abcd
=>ad+cb-2căn abcd>=0
=>(căn ad-căn cb)^2>=0(luôn đúng)
Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)
\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(ad=bc\)
Vậy ...
Sử dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)
\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)
okey?