Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Ta tách VT=A+B và xét
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu = khi a=b=c=1
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Ta tách VT = A + b và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))
Dấu = khi a = b = c = 1 .
#)Trả lời :
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Tách VT = A + B và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu ''='' xảy ra khi a = b = c = 1
Tham khảo nhé ^^
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
2, Với x,y,z\(\ge\)0 có \(x^3+y^3+z^3\ge xyz\left(x+y+z\right)\)
Dấu "=" xảy ra <=> x=y=z
Áp dụng bđt trên với a,b,c >0 có
\(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}.\frac{a}{b}.b\left(\frac{1}{a}+\frac{a}{b}+b\right)\)=\(\frac{1}{a}+\frac{a}{b}+b\)
Dấu "=" xảy ra <=>a=b=1
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)
\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)
Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)
Đẳng thức xảy ra khi a = b = c = 1
a)Từ \(a+b+c\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*
Khi \(a=b=c\)
b)Áp dụng BĐT AM-GM ta có:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự rồi cộng theo vế :
\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Khi \(a=b=c=1\)