Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{25a}{b+c}+25+\frac{16b}{a+c}+16+\frac{c}{a+b}+1-42\)
\(VT=\frac{25\left(a+b+c\right)}{b+c}+\frac{16\left(a+b+c\right)}{a+c}+\frac{a+b+c}{a+b}-42\)
\(VT=\left(a+b+c\right)\left(\frac{25}{b+c}+\frac{16}{a+c}+\frac{1}{a+b}\right)-42\)
\(VT\ge\left(a+b+c\right).\frac{\left(5+4+1\right)^2}{b+c+a+c+a+b}-42=\frac{100\left(a+b+c\right)}{2\left(a+b+c\right)}-42=8\)
Dấu "=" xảy ra khi: \(\frac{b+c}{5}=\frac{a+c}{4}=\frac{a+b}{1}=\frac{2\left(a+b+c\right)}{5+4+1}=\frac{a+b+c}{5}\)
\(\Rightarrow a=0\) trái giả thiết a dương, vậy dấu "=" không xảy ra
\(\Rightarrow\frac{25a}{b+c}+\frac{16b}{a+c}+\frac{c}{a+b}>8\)
\(P=\frac{1}{25a}+\frac{1}{16b}+\frac{1}{9c}=\frac{\frac{1}{25}}{a}+\frac{\frac{1}{16}}{b}+\frac{\frac{1}{9}}{c}\ge\frac{\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)^2}{a+b+c}=\frac{2209}{3600}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{\frac{1}{5}}{a}=\frac{\frac{1}{4}}{b}=\frac{\frac{1}{3}}{c}=\frac{\frac{1}{5}+\frac{1}{4}+\frac{1}{3}}{a+b+c}=\frac{47}{60}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=\frac{1}{5}:\frac{47}{60}=\frac{12}{47}\\b=\frac{1}{4}:\frac{47}{60}=\frac{15}{47}\\c=\frac{1}{3}:\frac{47}{60}=\frac{20}{47}\end{cases}}\)
...
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
áp dụng bđt cô si ta có:
\(\frac{a^8}{b^3}+a^2b^3\ge2a^5;\frac{b^8}{c^3}+b^2c^3\ge2b^5;\frac{c^8}{a^3}+c^2a^3\ge2c^5\)
\(\Rightarrow\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge2\left(a^5+b^5+c^5\right)-\left(a^2b^3+b^2c^3+c^2a^3\right)\)
áp dụng bđt cô si ta có:
\(a^5+a^5+b^5+b^5+b^5\ge5\sqrt[5]{a^5.a^5.b^5.b^5.b^5}=5a^2b^3\)
\(b^5+b^5+c^5+c^5+c^5\ge5\sqrt[5]{b^5.b^5.c^5.c^5.c^5}=5b^2c^3\)
\(c^5+c^5+a^5+a^5+a^5\ge5\sqrt[5]{c^5.c^5.a^5.a^5.a^5}=5c^2a^3\)
\(\Rightarrow5\left(a^5+b^5+c^5\right)\ge5\left(a^2b^3+b^2c^3+c^2a^3\right)\Rightarrow a^5+b^5+c^5\ge a^2b^3+b^2c^3+c^2a^3\)
\(\Rightarrow2\left(a^5+b^5+c^5\right)-\left(a^2b^3+b^2c^3+c^2a^3\right)\ge a^5+b^5+c^5\)
\(\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge a^5+b^5+c^5\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c
Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)
Khi đó \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\).
Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.