Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3 \)
b) \(\dfrac{3\left(b+7\right)4}{8\left(b+7\right)6}=\dfrac{12\left(b+7\right)}{48\left(b+7\right)}=\dfrac{1}{4}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{15x}{20x^2}=\dfrac{3}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}=\dfrac{5a-10c}{2a}\)
chắc đề cho x,y chứ x+y=6,x-y=4,xy=5
(làm ra bạn tự thay số vào tính)
a,\(=>A=\left(x+y\right)^2-2xy=.....\)
b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)
c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)
d,\(=>D=\dfrac{x+y}{xy}=.....\)
e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=29\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=133\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=641\)
\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-\left(ab\right)^2\left(a+b\right)=3157\)
\(a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}=\pm3\)
a, `A = a^2 + b^2 = (a + b)^2 - 2ab`
Thay `a + b = 7 ; ab = 10` vào A ta được:
`A = 7^2 - 2 . 10 = 29`
Vậy `A = 29` tại `a + b = 7 ; ab = 10`
b, `B = a^3 + b^3 = (a + b)^3 - 3ab (a + b)`
Thay `a + b = 7 ; ab = 10` vào B ta được:
`B = 7^3 - 3 . 10 . 7 = 133`
Vậy `B = 133` tại `a + b = 7 ; ab = 10`
c, Ta có: `a^2 + b^2 = 29` (chứng minh câu a)
`=> (a^2 + b^2)^2 = 29^2`
`=> a^4 + 2a^2b^2 + b^4 = 841`
Thay `ab = 10` vào biểu thức trên ta được:
`a^4 + 2 . 10^2 + b^4 = 841`
`=> a^4 + b^4 = 841 - 2 . 10^2 = 641`
hay `C = 641`
d, Ta có: `(a^3 + b^3) (a^2 + b^2) `
`= a^5 + a^3b^2 + a^2b^3 + b^5`
`= a^5 + b^5 + a^2b^2 (a + b)`
hay `133 . 29 = a^5 + b^5 + 10^2 . 7`
`=> a^5 + b^5 = 3157`
hay `D = 3157`
e, Ta có: \(E=a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}\)
Thay `a + b = 7` và `ab = 10` vào biểu thức trên ta được:
\(E=\pm\sqrt{7^2-4.10}=\pm3\)