K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Các bạn giúp mình nhanh nhanh sáng mai kiểm tra rồi !!!!!!!!

11 tháng 9 2018

a) \(a^3-b^3\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\) (*)

Ta có:

\(a-b=1\)

\(\Rightarrow\left(a-b\right)^2=1\)

\(\Rightarrow a^2-2ab+b^2=1\)

\(\Rightarrow a^2+b^2=1+2ab\left(1\right)\)

Ta lại có: \(ab=6\left(2\right)\)

Thay (1) và (2) vào (*) ta được

\(=1.\left(1+2ab+ab\right)\)

\(=1+3ab\)

\(=1+3.6\)

\(=19\)

b) \(a^3-b^3\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)(*)

Ta có:

\(a+b=1\)

\(\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow a^2+2ab+b^2=1\)

\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)

Ta lại có: \(ab=-1\left(2\right)\)

Thay (1) và (2) vào (*) ta được

\(=1\left(1-2ab+ab\right)\)

\(=1-ab\)

\(=1-\left(-1\right)\)

\(=2\)

c) \(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)

\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\) (*)

Ta có:

\(a+b=1\)

\(\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow a^2+2ab+b^2=1\)

\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)

Ta lại có: \(ab=-2\left(2\right)\)

Thay (1) và (2) vào (*) ta được

\(=2.1\left(1-2ab-ab\right)-3\left(1-2ab\right)\)

\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)

\(=2\left[1-3.\left(-2\right)\right]-3\left[1-2.\left(-2\right)\right]\)

\(=2.7-3.5\)

\(=29\)

d) \(x^3+y^3+3xy\)

\(=x^3+y^3+3xy\left(x+y\right)\) ( Vì x + y = 1 nên GTBT không đổi )

\(=\left(x+y\right)^3\)

\(=1\)

e) \(x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\) ( Vì x - y = 1 nên GTBT không đổi )

\(=\left(x-y\right)^3\)

\(=1\)

8 tháng 8 2021

Ta có x + y = a + b 

=> (x + y)2 = (a + b)2 

=> x2 + y2 + 2xy = a2 + b2 + 2ab 

=> xy = ab

Lại có x + y = a + b

=> (x  + y)3 = (a + b)3 

=> x3 + 3x2y + 3xy2 + y3 = a3 + 3a2b + 3ab2 + b3 

=> x3 + y3 + 3xy(x + y) = a3 + b3 + 3ab(a + b)

=> x3 + y3 = a3 + b3 (vì x + y = a + b ; xy = ab)

12 tháng 11 2017

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

21 tháng 10 2021

Bài 3: 

a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=7^3-3\cdot12\cdot7\)

\(=343-252=91\)

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)

\(=-27-18=-45\)

17 tháng 7 2021

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

17 tháng 7 2021

đúng rồi mà

23 tháng 12 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1