Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)
`a^2+4ab-5b^2=0`
`<=>a^2+4ab+4b^2-9b^2=0`
`<=>(a+2b)^2-9b^2=0`
`<=>(a+2b-3b)(a+2b+3b)=0`
`<=>(a-b)(a+5b)=0`
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-5b\end{matrix}\right.\)
`Q={2a-b}/{a-b}+{3a-2b}/{a+b}`
Với `a=b` `=>` giá trị vô nghĩa
Với `a=-5b`
`Q={-10b-b}/{-5b-b}+{-15b-2b}/{-5b+b}`
`Q={-11b}/{-6b}+{-17b}/{-4b}`
`Q=11/6+17/4`
`Q=73/12`
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{bc}{a+3b+2c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{c}{2}\right)\)
\(\frac{ca}{b+3c+2a}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{c+a}+\frac{a}{2}\right)\)
\(\frac{ab}{c+3a+2b}\le\frac{1}{9}\left(\frac{ab}{c+a}+\frac{ab}{a+b}+\frac{b}{2}\right)\)
Cộng theo vế của 3 BĐT ta có:
\(VT\le\frac{1}{9}\left(\frac{a+b+c}{2}+\frac{ca+ab}{a+c}+\frac{ab+bc}{a+b}+\frac{bc+ca}{b+c}\right)\)
\(=\frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=1\)
Dấu "=" khi a=b=c=2