K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

NM
14 tháng 1 2022

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương