Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\)(6n-1)chc(3n+2)
Mà (6n+4)chc(3n+2)
\(\Rightarrow\) (6n+4-6n+1)chc(3n+2)\(\Rightarrow\)5 chc(3n+2)
Lập bảng để suy ra n{-1,1}
Vay 6n-1 chia het cho 3n+2
2(3n+2)-5 chia het cho 3n+2
Ma 2(3n+2)chia het cho 3n+2 nen -5 chia het cho 3n+2
=>3n+2 thuoc Ư(-5)={1;-1;5;-5}
Sau do ban thay 3n+2 vao la tim duoc n (neu thu khong ra so nguyen thi ban loai)
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Gọi ước chung là d (d thuộc N*)
ta có 6n+3chia hết cho d
3n+1chia hết cho d
=>6n-3chia hết cho d
6n+2chia hết cho d
=>(6n-3)-(6n+2)chia hết cho d
=>1chia hết cho d
=> d=1
=>n=1
vậy n=1
a) A = 6n+9-13 / 2n+3 = 3 - 13/2n+3
để A rút gọn được thì 13 phải chia hết cho 2n+3
Ư(13) thuộc Z là -13,-1,1,13
<=> n có thể là -8,-2,-1,5
câu a ko bít đúng ko, vì cái từ "rút gọn được" hơi khó hỉu, ko biết bạn muốn rút thành phân số tối giản hay theo cách của mình là rút thành số nguyên. Mình giải tiếp câu b đây, câu này dễ, cho mìnk 4,5 * nká
b) để A nhỏ nhất, A phải là số âm
=> 6n-4 là số âm, 2n+3 là số dương (TH1)
hoặc 6n-4 là số dương, 2n+3 là số âm (TH2)
*TH1:
6n -4 < 0 <=> 6n < 4 <=> n < 4/6
2n+3 > 0 <=> 2n > -3 <=> n > -3/2
mà n thuộc Z
=> n= 0 hoặc n=-1
*TH2:
6n -4 > 0 <=> 6n > 4 <=> n > 4/6
2n+3 < 0 <=> 2n < -3 <=> n < -3/2
=> mâu thuẫn
vậy ta xét tiếp A nhỏ nhất khi n = 0 hoặc n = -1.
<Tới đây thì bạn tự giải nha>
tớ giải được A nhỏ nhất (A=-10) khi n = -1
=>\(\frac{6n-2-1}{3n-1}\)=>\(\frac{2\left(3n-1\right)-1}{3n-1}\)=2\(\frac{1}{3n-1}\)
=>để (6n-1)/(3n-1) nguyên thì 1/3n-1 nguyên
=>1 chia hết cho 3n-1
=>3n-1 thuộc 1,-1
ta có : 6n-3 / 3n+1
= 6n+2-5 / 3n+1
= 6n+2 / 3n+1 - 5/3n+1
= 2 - 5/3n+1
Vì 2 là số nguyên nên để 6n-3/3n+1 là số nguyên thì 5/3n+1 phải là số nguyên
Để 5/3n+1 là số nguyên thì 5 chia hết cho 3n+1
=> 3n + 1 thuộc Ư(5)
mà Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> 3n+1 thuộc { -1 ; 1 ; -5 ; 5 }
=> 3n thuộc { -2 ; 0 ; -6 ; 4 }
vì 3n chia hết cho 3 với mọi số nguyên n
=> 3n thuộc { 0 ; -6 }
=> n thuộc { 0 ; -2 }
ta có bảng sau
n | 0 | -2 |
6n-3 | -3 | -15 |
3n+1 | 1 | -5 |
6n3/3n+1 | -3/1=-3 thuộc Z ( thỏa mãn | -15/-5=3 thuộc Z ( thỏa mãn ) |
Vậy tập hợp giá trị n thỏa mãn là { 0 ; -2 }
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
Ta có :
\(A=\frac{\left(6n-3\right)}{\left(3n+1\right)}=\frac{2\left(3n+1\right)-5}{\left(3n+1\right)}=2-\frac{5}{\left(3n+1\right)}.\)
Để \(A\)là số nguyên thì \(\frac{5}{\left(3n+1\right)}\)nguyên hay \(5⋮3n+1\)
Do đó \(\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
Lại có \(3n+1⋮3\)dư 1 nên \(\left(3n+1\right)\in\left\{1;-5\right\}\)hay \(n\in\left\{0;2\right\}\)
Vậy các số nguyên n thỏa mãn \(A\)có giá trị nguyên khi \(n=0\)hoặc \(n=2\)
=(6n-1) chia hết cho (3n+2)
Mà (6n+4) chia hết cho(3n+2)
=(6n+4-6n+1) chia hết cho (3n+2)=5 chia hết cho(3n+2)
Lập bảng đề suy ra n{-1,1}