K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

26 tháng 12 2022

b)

B=5+52+...+596

Do 5 mũ bao niêu tận cùng là 5

=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B

Số số hạng của B là:96-1+1=96(số hạng)

=>Tổng các chữ số tận cùng của các số hạng của  B là:5x96=480

=>chữ số tận cùng của B là 0

Vậy chữ số tận cùng của B là 0

9 tháng 1 2021

a, Từ 0 đến 13

b, Từ 0 đến 3

23 tháng 12 2019

a) \(A=1+3+...+3^{50}\)

\(3A=3+3^2+...+3^{51}\)

\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)

B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)

\(=13+13\cdot3^2+...+13\cdot3^{48}\)

\(=13\left(1+3^2+...+3^{48}\right)⋮2\)

\(\Rightarrow A⋮3\)

C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)

\(=13+40\left(3^3+3^7+...+3^{47}\right)\)

Vậy A chia cho 40 dư 13

d) theo câu C

\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)

có tân cùng  là 0

Mà + thêm 13 nên có tận cùng là 3

23 tháng 12 2019

Cau B mk hơi lỗi xíu , bạn tự sửa nha