K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b

3 tháng 4 2023

P = 1 + 50 + 51 + 52 + 53 +.......+5100

P = 1 + 1 + ( 51 + 52 + 53+........+5100)

P = 2 + 5.( 1 + 5 + 52 +..........+599)

Vì 5.( 1 + 5 + 52+......+599) ⋮ 5 ⇒ P  : 5 dư 2

Một số chính phương chia 5 chỉ có thể dư 1 hoặc 4 mà p chia 5 dư 2 vậy p không phải là số chính phương

 

 

3 tháng 6 2016

a)5A=5(5+52+...+5120)

5A=52+53+...+5121

5A-A=(52+53+...+5121)-(5+52+...+5120)

4A=5121-5

A=(5121-5)/4