Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
C=(5+52)+(53+54)+.......+(511+512)
=30+52.(51+52)+.....+510.(51+52)
=30.1+52.30+.....+510.30
=30.(1+52+.........+510) chia hết cho 30
chắc là đúng ahihihi
a) Ta có: 4713= 474.3+1=(474)3 . 47 = ......1 . 47 = .......7
\(\Rightarrow\)4713 + 3 = ...........7 + 3 = ................0 \(⋮\)2;5
b) Ta có: 1430= 142.15 = (142)15 = 19615= .........6
\(\Rightarrow\)1430 - 1 = .........6 - 1 = ........5 \(⋮\)5
fffffffffffffffffffffffffffffffffff
Ta có\(A=5+5^2+5^3+...+5^{14}\)
\(A=5\left(1+5+5^2+...+5^{13}\right)\)và hiển nhiên \(A⋮5\)(1)
Mặt khác \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{13}+5^{14}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{13}\left(1+5\right)\)
\(A=\left(1+5\right)\left(5+5^3+...+5^{13}\right)\)
\(A=6\left(5+5^3+...+5^{13}\right)\)và hiển nhiên \(A⋮6\)(2)
Mà ƯCLN(5,6) = 1 (3)
Từ (1), (2) và (3) \(\Rightarrow A⋮5.6=30\)Vậy \(A⋮30\)