Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
\(A=3+2^2+...+2^{99}\)
\(\Rightarrow A=1+2+2^2+...+2^{99}\)
\(\Rightarrow2A=2+2^2+...+2^{100}\)
\(\Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\)
\(\Rightarrow A=2^{100}-1\)
Thay A = 2100 - 1 vào A + 1 = 4^n , ta có:
\(2^{100}-1+1=4^n\)
\(\Rightarrow2^{100}=2^{2n}\)
\(\Rightarrow2n=100\Rightarrow n=50\)
A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
B = 5/1*4 + 5/4*7 + .... + 5/100*103
B = 5/3*(3/1*4 + 3/4*7 + ... + 3/100*103)
B = 5/3*(1 -1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)
B = 5/3*(1 - 1/103)
B = 5/3* 102/103
Đáp án cần chọn là: D