K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề của bn thiếu nha

A=32+33+34+.....+32019

A=(32+33+34+35)+......+(32016+32017+32018+32019)

A=(32+33+34+35)+....+32014.(32+33+34+35)

A=360+....+32014.360

A=360.(1+....+32014)

A=3.120.(1+....+32014)\(⋮\)120

Vậy A\(⋮\)120

Chúc bn học tốt

20 tháng 2 2018

giup minh voi

12 tháng 10 2016

A=3+32+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

a) 2A+3=3101-3+3=3101=3n

=>n=101

b) A=3+32+...+3100

A=(3+32)+...+(399+3100)

A=3.(1+3)+...+399.(1+3)

A=3.4+...+399.4

A=(3+...+399).4

=>A chia hết cho 4

A=3+32+...+3100

A=(3+32)+...+(399+3100)

A=3.(3+32)+...+399.(3+32)

A=3.12+...+399.12

A=(3+...+399).12

=>A chia hết cho 12

12 tháng 10 2016

Mình có làm câu a rồi, bạn tham khảo nhé! 
A= 3 + 3^2 + 3^3 +..........+ 3^100
3.A =3^2 + 3^3 +3^4 +..........+ 3^100 + 3^101
3.A - A = 2.A
3^101 - 3 = 2.A 
=>2.A + 3 =3^101
=> n = 101
 

12 tháng 10 2016

A=\(A=3+3^2+3^3+.....+3^{100}\\ \Rightarrow3A=3^2+3^3+....+3^{101}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\frac{3^{101}-3}{2}\\ \)

a) \(A=\frac{3^{101}-3}{2}\\ \Rightarrow 2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\\ \Rightarrow n=101\)

b) \(3+3^2+3^3+....+3^{100}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{98}+3^{100}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{98}\left(1+3\right)\\ =3.4+3^3.4+...+3^{98}.4\)

Vậy A chia  hết cho 4 ; A cũng chia hết cho 3 vì mỗi số hạng của A đều  chia hết cho 3 

Mà (3;4)=1 => a chia hết cho 12 

\(a.ababab=ab.10101⋮3\)

\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)

\(a.42k+14\)

\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)

\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)