Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(A\) có thể viết thành tích của hai số tự nhiên liên tiếp.
Do đó \(A\) có dạng \(A=n\left(n+1\right)\) với \(n\in N\)
Hay \(3^{2013}+1=n\left(n+1\right)\Leftrightarrow3^{2013}+1=n^2+n\)
\(\Leftrightarrow4\left(3^{2013}+1\right)+1=4n^2+4n+1\)
\(\Leftrightarrow4.3^{2013}+5=\left(2n+1\right)^2\Leftrightarrow3\left(4.3^{2012}+1\right)+2=\left(2n+1\right)^2\) (*)
Vì \(3\left(4.3^{2012}+1\right)+2\) chia 3 dư 2. Mà \(\left(2n+1\right)^2\) là số chính phương nên chia 3 chỉ dư \(0;1\)
Do đó (*) vô lý . Vậy \(A\)không thể viết thành tích của hai số tự nhiên liên tiếp.
Quá đơn giản.
3^50 + 1 chia 3 dư 1.
Mặt khác tích 2 số tự nhiên liên tiếp phải chia hết cho 3 (khi một trong 2 số chia hết cho 3) hoặc chia 3 dư 2 (khi 1 số chia 3 dư 1 và 1 số chia 3 dư 2).
Vậy 3^50 + 1 không thể là tích 2 số tự nhiên liên tiếp.
Ta có 3050 có chữ số tận cùng là 0
1 có chữ số tận cùng là 1
Vậy A có chữ số tận cùng là 1 mà tích 2 số tự nhiên liên tiếp không thể là 1
nên A không thể là tích 2 số tự nhiên liên tiếp
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2