Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
Ta có: A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3
Để A có giá trị nguyên <=> n+3∈Ư(7)={±1;±7}n+3∈Ư(7)={±1;±7}
n + 3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
Vậy để A có giá trị nguyên thì n = {-2;-4;4;-10}
Để M nguyên thì \(2n-1⋮n+3\)
\(\Leftrightarrow2n+6-7⋮n+3\)
mà \(2n+6⋮n+3\)
nên \(-7⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-7\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;-7;7\right\}\)
hay \(n\in\left\{-2;-4;-10;4\right\}\)
Vậy: \(n\in\left\{-2;-4;-10;4\right\}\)
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
Để A là số nguyên thì
4n+1\(^._:\)2n+3
=>4n+6-5\(^._:\)2n+3
Vì 4n+6\(^._:\)2n+3
=>5\(^._:\)2n+3
=>2n+3\(\in\)Ư(5)={1;-1;5;-5}
Ta có bảng sau:
2n+3 | n |
1 | -1 |
-1 | -2 |
5 | 1 |
-5 | -4 |
KL: n\(\in\){-1;-2;1;-4}
\(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2+\frac{7}{n+3}\)
A nguyên <=>\(2+\frac{7}{n+3}\) nguyên
<=>7 chia hết cho n+3
<=>\(n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
<=>\(n\in\left\{-10;-4;-2;4\right\}\)
Vậy A nguyên khi \(n\in\left\{-10;-4;-2;4\right\}\)