K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2015

A=2+2^2+2^3+....+2^10

2.A=2^2+2^3+...+2^10+2^11

2.A-A=2^11-2=2048-2=2046 tick mik nhéĐinh Thị Thu Trang

21 tháng 6 2017

Co Gai De Thuong

A = 2 + 22 + 23 + ... + 299 + 2100

   = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

   = 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x  ( 1 + 2 + 22 + 23 + 2)

   = 2 x      31                          + ... +  296 x 31

   = 31 ( 2 + ... + 296 )

Vậy A chia hết cho 31       

21 tháng 6 2017

A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100

A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]

A = 62 + ... + 295.62

A = 2.31 + .... + 295.2.31

A = 31.2.[20 + 25 + ... +295]

=> A \(⋮31\)

29 tháng 11 2017

8n + 193 chia hết 4n + 3

=> 8n + 6 + 187 chia hết 4n + 3

=> 2( 4n + 3 ) + 187 chia hết 4n + 3

=> 187 chia hết cho 4n+ 3

=> 4n thuộc Ư( 187 ) và n thuộc N

Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }

4n + 3 = 1 ( loại )

4n + 3 = 11 => n=2

4n + 3 = 17 ( loại )

4n + 3 = 187 => n = 46

vậy n= 2 hoặc 46

8n + 193 chia hết 4n + 3

=> 8n + 6 + 187 chia hết 4n + 3

=> 2( 4n + 3 ) + 187 chia hết 4n + 3

=> 187 chia hết cho 4n+ 3

=> 4n thuộc Ư( 187 ) và n thuộc N

Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }

4n + 3 = 1 ( loại )

4n + 3 = 11 => n=2

4n + 3 = 17 ( loại )

4n + 3 = 187 => n = 46

vậy n= 2 hoặc 46

22 tháng 6 2017

Ta có:

\(A=2+2^2+2^3+2^4+....+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2\times31+....+2^{96}\times31\)

\(=31\left(2+2^6+....+2^{96}\right)\)

\(\Rightarrow\)A chia hết cho 31 (vì có chứa thừa số 31)

22 tháng 6 2017

 Nhưng 2 + 2^2 + 2^3 + 2^4 + 2^4 + 2^5 = 62 ko ra 31

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

16 tháng 12 2019

\(A = 1 + 4 + 4^2 + ... + 4\)\(20\)

\(4A = 4 + 4^2 + 4^3 + ...+ 4\)\(21\)

\(4A - A = ( 4+ 4^2 + 4^3 + ... + 4\)\(21\)\()\)\(- ( 1 + 4 + 4^2 + ... + 4\)\(20\) \()\)

\(3A = 2\)\(21\) \(- 1\)

\(\Leftrightarrow\)\(3A + 1 = 2\)\(21\)\(= ( 2^3)^7\)\(= 8^7\)

\(Ta có : 8^7 < 63^7 \)

\(Nên 3A + 1 < 63^7\)

16 tháng 12 2019

Vì A= 4^0 + 4^1 + 4^2+ 4^3+....+4^20

Suy ra: 4A= 4^1+4^2+4^3+4^4+......+ 4^21

Suy ra:4A-A= 4^21 - 4^0

Suy ra: 3A = 4^21-1

Suy ra: A= (4^21-1) : 3

Suy ra: 3A+1= 3. [ ( 4^21-1) : 3] +1

Suy ra: 3A+1 = ( 4^21-1)+1

Suy ra: 3A + 1 = 4^21= (4^3)^7=64^7

Vì 64 > 63; 7=7

Suy ra: 64^7 > 63^7 hay 3A+1 > 63^7

22 tháng 10 2015

b/10^10+14=100..000+14=100..014 chia hết cho 2

có tổng các chữ số là:

1+0+0+..+0+1+4=1+1+4=6 chia hết cho 3

15 tháng 10 2017

Ta co:   B= 1 + 3 +32 + 33 + ....... + 399

                  = (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3) 

               = (1 + 3)(1 + 32 +34 + ......... + 398)

               = 4(1 + 32 +34 + ........... + 398\(⋮\)

    Vay B \(⋮\)

   k cho mk nha

15 tháng 10 2017

B=(1+3)+(32+33)+...+(398+399)

  =(1+3)+32(1+3)+...+398(1+3)

  =4+32.4+.....+398.4

  =4.(1+32+...+398)

vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)