Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}\) (*)
mà \(\frac{2003.a^2}{2003.b^2}=\frac{2004.c^2}{2004.d^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)
Từ (*) \(\Rightarrow\frac{a^2}{b^2}=\frac{2003.a^2+2004.c^2}{2003.b^2+2004.d^2}\)
\(\Rightarrow\frac{2003.b^2+2004.d^2}{b^2}=\frac{2003.a^2+2004.c^2}{a^2}\left(đpcm\right)\)
A = 1 + 2 + 22 + 23 + ... + 22003
2A = 2 + 22 + 23 + 24 + ... + 22004
2A - A = (2 + 22 + 23 + 24 + ... + 22004) - (1 + 2 + 22 + 23 + ... + 22003)
A = 22004 - 1 = B
Ta có: \(A=1+2+2^2+2^3+...+2^{2003}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2004}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2004}\right)-\left(1+2+2^2+2^3+...+2^{2003}\right)\)
\(\Rightarrow A=2^{2004}-1\)
Mà \(B=2^{2004}-1\)
\(\Rightarrow B=A\) hay A = B
Vậy A = B
1) Áp dụng BĐT \(\frac{a}{b}>\frac{a-m}{b-m}\) với \(\frac{a}{b}< 1\) .Dễ dàng chứng minh Bđt trên, áp dụng vào ta có:
a) \(x=\frac{2002}{2003}=\frac{2002-1+1}{2003-1+1}=\frac{2003-1}{2004-1}< \frac{2003}{2004}\)
Với \(\frac{a}{b}=\frac{2003}{2004};\frac{a-m}{b-m}=\frac{2003-1}{2004-1}\)
Từ đó ta có: x < y
b) Vì đây là phân số âm nên bé hơn phân số dương nên ta có BĐT: \(\frac{a}{b}>\frac{c}{d}\Leftrightarrow\frac{-a}{b}< \frac{-c}{d}\)
Áp dụng vào bài toán trên với \(\frac{a}{b}=\frac{2002}{2003}< 1\)và \(\frac{c}{d}=\frac{2005}{2004}>1\)
Nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{-a}{b}>\frac{-c}{d}\)hay x > y
Bài 1 :
a, Ta có : \(x=\frac{2002}{2003}=1-\frac{1}{2003}\)
\(y=\frac{2003}{2004}=1-\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow1-\frac{1}{2003}< 1-\frac{1}{2004}\)
\(\Rightarrow x< y\)
b, Ta thấy cả 2 vế đều có dấu âm nên ta rút gọn dấu âm đi thì được :
\(x=\frac{2002}{2003}\) \(y=\frac{2005}{2004}\)
Lúc này :
Ta có : \(y=\frac{2005}{2004}>1=\frac{2003}{2003}>\frac{2002}{2003}=x\)
Vì khi so sánh dương sẽ đối ngược với so sánh âm :
\(\Rightarrow\)Khi trả lại dấu âm thì tất nhiên \(x=\frac{-2002}{2003}>y=\frac{2005}{-2004}\)
Vậy \(x>y\)
Bài 2 :
Ta quy đồng các phân số trên như sau :
\(\frac{-2}{7}=\frac{-6}{21}\) \(\frac{-2}{9}=\frac{-6}{27}\)
Gọi các phân số thỏa mãn điều kiện trên là x .
Ta có : \(\frac{-6}{21}< x< \frac{-6}{27}\)
\(\Rightarrow x\in\left\{\frac{-6}{22};\frac{-6}{23};\frac{-6}{24};\frac{-6}{25};\frac{-6}{26}\right\}\)
Ta rút gọn và dấu của các phân số như sau ( nếu không rút gọn được thì cúng đừng chuyển dấu ) :
\(x\in\left\{\frac{3}{-11};\frac{-6}{23};\frac{3}{-12};\frac{-6}{25};\frac{3}{-13}\right\}\)
Vậy các phân số thỏa mãn đề bài là : \(\frac{3}{-11};\frac{3}{-12};\frac{3}{-13}\).